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Tasks

● Language Modeling: 

Generate next word, sentence     

≈ capture hidden 

representation of sentences. 

● Word, Document Classification

(named entity tagging; sentiment 

analysis using sequence, etc…) 

● Recurrent Neural Network and 
Sequence Modelshow?



Language Modeling

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?
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    icing     the      fork   carrots cheese spoon



Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of 
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The horse which was raced 
past the barn [tripped]  . 



Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of 
natural language 

Trained
Language 

Model

Training Corpus
training

(fit, learn)

What is the next word 
in the sequence?

To fully capture natural 
language, models get 
very complex! 

The horse which was raced 
past the barn [tripped]  . 
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(excluding the optimization nodes)
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“hidden layer”

y(t) = f(h(t)W)

Vector Multiply

h(t) = g(x(t)W)
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Common Activation Functions
z = h(t)W

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)
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(weighted sum)
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Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

yt = f(matmul(ht,W))

Activation Function

ht = g(ht-1 U + xtV)

short hand for vector/ matrix multiply



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)



Common Activation Functions
z = h(t)W

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)



Example: Forward Pass

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= g(U h
(i-1)

 + W x
(i)

) #update hidden state

y
(i) 

= f(V h
(i)

) #update output

(Geron, 2017)
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Example: Forward Pass 

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= tanh(matmul(U,h
(i-1)

)+ matmul(W,x
(i)

)) #update hidden state

y
(i) 

= softmax(matmul(V, h
(i)

)) #update output
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Need a workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors
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A multi-dimensional matrix

A 2-d tensor is just a matrix.
1-d: vector

0-d: a constant / scalar



PyTorch

A workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors

(i.stack.imgur.com)

A multi-dimensional matrix

A 2-d tensor is just a matrix.
1-d: vector

0-d: a constant / scalar

Linguistic Ambiguity: 
“ds” of a Tensor =/=
Dimensions of a Matrix



PyTorch

A workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors

Why?

Efficient, high-level built-in linear algebra and machine 
learning optimization operations (i.e. transformations). 

enables complex models, like deep learning
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Example: RNN 

def forward(self, X):
#Basic RNN Forward Pass: 

     h
(0) 

= 0
for i in range(1, len(x)):

h
(i) 

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update 

hidden state

y
(i) 

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #normalized log likelihood loss

            #torch.mean(-torch.sum(y*y_pred))
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Back Propagation

def forward(self, X):
#Basic RNN Forward Pass: 
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Solution:
Unrolling

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)



Solution:
Unrolling

y("bill") = f(h("bill")W)

Activation Function

h("bill") = g(h("the") U + x("bill")V)
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chains together the gradients for each node 
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Back Propagation

def forward(self, X):
#Basic RNN Forward Pass: 

     h
(0) 

= 0
for i in range(1, len(x)):

h
(i) 

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update 

hidden state

y
(i) 

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

            #torch.mean(-torch.sum(y*y_pred))

cost

To find the gradient for the overall graph, we 
use back propogation, which essentially 
chains together the gradients for each node 
(function) in the graph.

With many recursions, the gradients can 
vanish or explode (become too large or 
small for floating point operations).  



Back Propagation

def forward(self, X):
#Basic RNN Forward Pass: 

     h
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How to address exploding and vanishing gradients?
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How to address exploding and vanishing gradients?

Ad Hoc approaches: e.g. stop backprop iterations very early. “clip” gradients when 
too high. 



How to address exploding and vanishing gradients?

Dominant approach: Use Long Short Term Memory Networks (LSTM)
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RNN model “unrolled” depiction

(Geron, 2017)



How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)



How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

“long term state”

“short term state”



How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

“long term state”

“short term state”



How to address exploding and vanishing gradients?

The LSTM Cell

“long term state”

“short term state”

bias term



The LSTM Cell

“long term state”

“short term state”

LSTM



Input to LSTM

?
● One-hot encoding?
● Word Embedding
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The GRU

Gated Recurrent Unit

(Geron, 2017)
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The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update  gate A candidate for updating h, 

sometimes called: h~



The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten. 



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

The cake, which contained candles, was eaten. 



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

This tends to keep the gradient 
from vanishing since the same 
values will be present through 
multiple times in backpropagation 
through time. (The same idea 
applies to LSTMs but is easier to 
see here). 

The cake, which contained candles, was eaten. 



How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred)) 

#where did this come from? 

Logistic Regression Likelihood:

Final Cost Function:  -- ”cross entropy error”

?
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How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred)) 

#where did this come from? 

Logistic Regression Likelihood:

Log Likelihood:  

Log Loss: 

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function:  -- ”cross entropy error”

To Optimize Betas (all weights within LSTM cells): 

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration



RNN-Based Language Models
Take-Aways

● Simple RNNs are powerful models but they are difficult to train: 

○ Just two functions h
(t)

 and y
(t)

 where h
(t) 

is a combination of h
(t-1)

 and x
(t)

.

○ Exploding and vanishing gradients make training difficult to converge. 

● LSTM and GRU cells solve

○ Hidden states pass from one time-step to the next, allow for 

long-distance dependencies. 

○ Gates are used to keep hidden states from changing rapidly (and thus 

keeps gradients under control). 

○ To train: mini-batch stochastic gradient descent over cross-entropy cost




