
Recurrent Neural Networks
for Language Modeling

CSE354 - Spring 2021
Natural Language Processing

Tasks

● Language Modeling:

Generate next word, sentence

≈ capture hidden

representation of sentences.

● Word, Document Classification

(named entity tagging; sentiment

analysis using sequence, etc…)

● Recurrent Neural Network and
Sequence Modelshow?

Language Modeling

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

Language Modeling

History
(He, at, the, cake, with, the)

Trained
Language

Model

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

 icing the fork carrots cheese spoon

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Trained
Language

Model

Training Corpus
training

(fit, learn)

What is the next word
in the sequence?

The horse which was raced
past the barn [tripped] .

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Trained
Language

Model

Training Corpus
training

(fit, learn)

What is the next word
in the sequence?

To fully capture natural
language, models get
very complex!

The horse which was raced
past the barn [tripped] .

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Vector Multiply

h(t) = g(x(t)W)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)W)

Common Activation Functions
z = h(t)W

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)W)“hidden layer”

(skymind, AI Wiki)

 (matmul) f, g

(weighted sum)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)W)“hidden layer”

(skymind, AI Wiki)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

yt = f(matmul(ht,W))

Activation Function

ht = g(ht-1 U + xtV)

short hand for vector/ matrix multiply

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Common Activation Functions
z = h(t)W

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Example: Forward Pass

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= g(U h
(i-1)

 + W x
(i)

) #update hidden state

y
(i)

= f(V h
(i)

) #update output

(Geron, 2017)

Example: Forward Pass

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= g(U h
(i-1)

 + W x
(i)

) #update hidden state

y
(i)

= f(V h
(i)

) #update output

Example: Forward Pass

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tanh(matmul(U,h
(i-1)

)+ matmul(W,x
(i)

)) #update hidden state

y
(i)

= softmax(matmul(V, h
(i)

)) #update output

Language Modeling

History
(He, at, the, cake, with, the)

Trained
Language

Model

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

 icing the fork carrots cheese spoon

Language Modeling

Last word
(the)

Trained
Language

Model

What is the next word
in the sequence?

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

 icing the fork carrots cheese spoon

Training Corpus
training

(fit, learn)

ht: a vector that we hope “stores”
relevant history from previous inputs:

He, at, the, cake, with,

Tensors in PyTorch

Need a workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors

(i.stack.imgur.com)

Tensors

Need a workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors

(i.stack.imgur.com)

A multi-dimensional matrix

PyTorch

A workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors

(i.stack.imgur.com)

A multi-dimensional matrix

A 2-d tensor is just a matrix.
1-d: vector

0-d: a constant / scalar

PyTorch

A workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors

(i.stack.imgur.com)

A multi-dimensional matrix

A 2-d tensor is just a matrix.
1-d: vector

0-d: a constant / scalar

Linguistic Ambiguity:
“ds” of a Tensor =/=
Dimensions of a Matrix

PyTorch

A workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors

Why?

Efficient, high-level built-in linear algebra and machine
learning optimization operations (i.e. transformations).

enables complex models, like deep learning

Language Modeling

Last word
(the)

Trained
Language

Model

What is the next word
in the sequence?

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

 icing the fork carrots cheese spoon

Training Corpus
training

(fit, learn)

ht: a vector that we hope “stores”
relevant history from previous inputs:

He, at, the, cake, with,

Example: RNN

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #normalized log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

Example: RNN

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Example: RNN

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

Back Propagation

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

cost

Solution:
Unrolling

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Solution:
Unrolling

y("bill") = f(h("bill")W)

Activation Function

h("bill") = g(h("the") U + x("bill")V)

Back Propagation

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

cost

Back Propagation

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

cost

To find the gradient for the overall graph, we
use back propogation, which essentially
chains together the gradients for each node
(function) in the graph.

Back Propagation

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

cost

To find the gradient for the overall graph, we
use back propogation, which essentially
chains together the gradients for each node
(function) in the graph.

(Geron, 2017)

Back Propagation

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

cost

To find the gradient for the overall graph, we
use back propogation, which essentially
chains together the gradients for each node
(function) in the graph.

With many recursions, the gradients can
vanish or explode (become too large or
small for floating point operations).

Back Propagation

def forward(self, X):
#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

cost

How to address exploding and vanishing gradients?

Last word
(the)

Trained
Language

Model

What is the next word
in the sequence?

 icing the fork carrots cheese spoon

Training Corpus
training

(fit, learn)

ht: a vector that we hope “stores”
relevant history from previous inputs:

He, at, the, cake, with,

How to address exploding and vanishing gradients?

How to address exploding and vanishing gradients?

Ad Hoc approaches: e.g. stop backprop iterations very early. “clip” gradients when
too high.

How to address exploding and vanishing gradients?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

How to address exploding and vanishing gradients?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)

How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

“long term state”

“short term state”

How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

“long term state”

“short term state”

How to address exploding and vanishing gradients?

The LSTM Cell

“long term state”

“short term state”

bias term

The LSTM Cell

“long term state”

“short term state”

LSTM

Input to LSTM

?
● One-hot encoding?
● Word Embedding

Input to LSTM

-0.5
3.5
3.21
-1.3
1.6

Input to LSTM

-0.5
3.5
3.21
-1.3
1.6

-2.0
5.5
-0.3
-1.1
6.3

0.53
2.5
3
-2.3
0.76

1.53
1.5
-3.2
2.3
10

1.53
1.5
-3.2
2.3
10

12
0.15
1.1
-0.7
-5.4

Input to LSTM

-0.5
3.5
3.21
-1.3
1.6

-2.0
5.5
-0.3
-1.1
6.3

0.53
2.5
3
-2.3
0.76

1.53
1.5
-3.2
2.3
10

1.53
1.5
-3.2
2.3
10

12
0.15
1.1
-0.7
-5.4sam

e

The GRU

Gated Recurrent Unit

(Geron, 2017)

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate A candidate for updating h,

sometimes called: h~

The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Final Cost Function: -- ”cross entropy error”

?

How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Final Cost Function: -- ”cross entropy error”

How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Final Cost Function: -- ”cross entropy error”

How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred))

#where did this come from?

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- ”cross entropy error”

To Optimize Betas (all weights within LSTM cells):

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration

RNN-Based Language Models
Take-Aways

● Simple RNNs are powerful models but they are difficult to train:

○ Just two functions h
(t)

 and y
(t)

 where h
(t)

is a combination of h
(t-1)

 and x
(t)

.

○ Exploding and vanishing gradients make training difficult to converge.

● LSTM and GRU cells solve

○ Hidden states pass from one time-step to the next, allow for

long-distance dependencies.

○ Gates are used to keep hidden states from changing rapidly (and thus

keeps gradients under control).

○ To train: mini-batch stochastic gradient descent over cross-entropy cost

